Safety At Traffic Signals For Cyclists And Pedestrians

Rohit Singh | Beca Shane Turner | Beca Tim Hughes | NZTA Gary Nates | Beca

調Beca

Overview

- Hierarchy of provision for bicycles
- Research undertaken
- Data collection
- Before and after study results
- Crash prediction models
- Key conclusions

веса

Before and A	fter Ana	alys	sis		
% change in crashes fter installation of cycle facilities:	Christcl	hurch 20	%	Adela	iide 37%
% reduction, by crash type		Christ	church Adelai		le
Crossing, both straight		74%		6%	
Right Turn against		-3%		-1%	
Same direction, rear end, sideswipe		-4%		16%	
Left turn sideswipe		58%		-103%	
All other cycle crashes		7	7%	-186%	
% reduction, by lane	arrangemen	t	Christ	church	Adelaide
Sites with shared left turns		40%		-40%	
Sites with exclusive left turns			3%		-36%
Sites with free left turns (FLTs)			-3	9%	-30%
Sites with coloured facilities			39%		N/Aoca
					E Deca

Cyclist Crash Models

20 models across 5 key crash categories.

Model types:

- All sites
- Christchurch sites only
- Presence/absence of cycle treatments
- Design parameters (eg. cycle lane width)

III Beca

C	Hi	Ч	0	1	1
3		u	C	- 1	

RS5		
	for the left most traffic lane plus any cycle lane	
	Esp same direction crashes	

There is evidence that shared lanes increase crashes of this type + also for left turn sideswipe. Rohit Singh, 27/03/2011

RS6

mitigate right angle but increase right turn against crashes. However the addition of colour may make a storage box safer. Deeper boxes Rohit Singh, 27/03/2011

RS8 Rohit Singh 27/03/2011 It maybe that cyclists are more careful when crossing major roads, than when they are cycling along major roads.

Rohit Singh, 27/03/2011

RS9

have a beneficial effect on left turn sideswipe crashes.

To ensure they succeed at preventing left turn sideswipe crashes, colour is most important and width less of an issue.

Rohit Singh, 27/03/2011

Pedestrian Crash Models

Crash Type		Model Parameters		
Right angle	Longer cycle, all-red times: more crashes	F _{Cycle facilities} 0.51 F _{Shared turns} 1.32 F _{Split phasing} 0.74 F _{Med island} 0.77	1 2 1 7	
Right turning/ pedestrian crossing	Longer amber times: more crashes	Full RT Protection 0.6 F_Residential 0.5 F_Coordinated 1.2 F_Med island 0.9	3 7 4 9	
		III Be	ca	

What are the models saying?

Conclusions: Cycle Crashes The overall effect of cycle lanes was neutral. Quality of

Conclusions: Cycle Crashes (contd.)

Sites with shared left-turn and through lanes Higher initial crash rates, but benefit the most from coloured cycle lanes and advanced storage boxes

Conclusions: Cycle Crashes (contd.)

Adequate total width in the kerbside approach lane is more important than the presence or width of a cycle lane within this space.

Conclusions: Pedestrian Crashes
Longer cycle times = more pedestrian crashes

