

Presentation Outline

- Background & Objectives
- Methodology
 - Model development
 - Incident modelling
 - Modelling of incident management strategies
 - Results
- Summary and Directions for Future Research

AECOM

Background

Incidents are any events that reduce the capacity of a road facility

- Roadway incidents impose a substantial cost to society when delays, congestion, secondary accidents and environmental emissions are taken into consideration
- Non-recurrent congestion accounts for 20-40 percent of congestion on motorways
- In Brisbane, the estimated avoidable cost of traffic congestion is \$1.472 billion

Congestion due to traffic incidents could be up to \$700 million per year (BTRE)

Background

Incident impacts can be reduced through implementation of incident management (IM)

- Evaluation of incident impacts and benefits of IM strategies is important for justification of expenditure of public funds on ITS
- Ideally, evaluation should be based on field tests but the limited data on dynamic impacts restrict a comprehensive evaluation
- Traffic simulation provides an alternative approach for evaluating the impacts

Objectives

Quantify the impacts of incidents and selected incident management strategies using a traffic simulation approach

- · Local and network-wide impacts
- Integrated motorway and arterial environment
- Traffic, fuel consumption, emissions, and operating costs impacts
- Incident management strategies evaluated:
 - Ramp metering
 - VMS information and route diversion
 - Variable speed limits
 - Dynamic traffic signal control

AECOM

2

Local Impacts

All incidents were evaluated at the local and network levels

- An example of local impacts is demonstrated by the simulation of a major incident that occurred at 7:15 am, blocked 2 lanes (out of 4) on the northbound direction and lasted for 1.5 hours
- Section of freeway where localised impacts were measured was 600-m long

	Section St	atistics – M	lormal Cor	ditions					1	11	
Time Interval	Average section flow (veh/h)	Average section speed (km/h)	Average section travel time (second)	Average Average delay.per stopped vehicle in time.pe section vehicle i (second) section.(ast of	X	
07:00-07:15	3032	98	18	0	0 0				1	111	
07:15-07:30	3364	98	19	1	0			and a star	tion of theoreman	111	
07:30-07:45	3276	95	19	1	1 0				such and the second	111	
07:45-08:00	3960	95	19	1	1 0				1	111	
08:00-08:15	4128	96	19	1	1 0					///	
08:15-08:30	5020	91	20	2	2 0				00.84+80		
08:30-08:45	4458	94	94 19 1 0							11	
08:45-09:00 4208 92 20 2 0						_			2/1	1	
Average 3931 95 19 1 0									2111		
arage section	flows redu	ced by 55%	6 (3,931 vs	S	ection Sta	atistics – I	Incident C	onditions	4		
arage section speed reduced by 37% (95 vs 60 kph)							Average section	Average section	Average section	delay per vehicle in	atop) Sime
vrago cochon	hage section traver time increased from 19 sec to 145 sec							(km/h)	(second)	(second)	secto
arage section		arage section delays increased from 1 sec to 127 sec							18	0	
rage section	delays inci	reased from	1 1 260 10 17	·····							6
rage section rage section	delays inci	reased from	I I Sec to L		-	37:15-07:30					
rage section rage section rage stoppe	delays incr d time incre	eased fron ased from	0 to 111 sec			37:15-07:30 37:30-07:45	2180	10	307	288	- 21
rage section rage section rage stoppe	delays inci d time incre	eased fron	0 to 111 sec			37:15-07:30 37:30-07:45 37:45-08:00	2180 2268	10 13	307 267	288 249	21
arage section arage section arage stoppe	delays inci d time incre	eased from	0 to 111 sec	2		37:15-07:30 37:30-07:45 37:45-08:00 38:00-08:15	2180 2268 2168	10 13 16	307 267 424	288 249 406	21 20 37
arage section arage section arage stoppe	delays inci d time incre	eased from	0 to 111 sec			37:15-07:30 37:30-07:45 37:45-08:00 38:00-08:15 38:15-08:30	2180 2268 2168 792	10 13 16 100	307 267 424 18	288 249 406 0	21 20 37
arage section arage section arage stoppe	delays incr d time incre	reased from	0 to 111 sec			37:15-07:30 37:30-07:45 37:45-08:00 38:00-08:15 38:15-08:30 38:30-08:45	2180 2268 2168 792 756	10 13 16 100 100	307 267 424 18 18	288 249 406 0	26 20 37
erage section erage stoppe	delays incr d time incre	reased from	0 to 111 sec			27:15-07:30 27:30-07:45 37:45-08:00 38:00-08:15 38:16-08:30 38:30-08:45 38:45-09:00	2180 2268 2168 792 756 728	10 13 16 100 100 101	307 267 424 18 18 18	288 249 405 0 0	20

Evaluation conducted using four-mode elemental model (Akcelik & Besley, 2003)

This model is based on drive cycles to estimate fuel consumption and emissions

Model was integrated with the traffic simulator using AIMSUN's Application Programming Interface (API)

AIMSUN tracks the movement of individual vehicles and generates speed, acceleration & deceleration estimates for use by the emissions model

AECOM

IM Strategies – VMS & Route Diversions

Traffic flow variations suggest diversion rate of 30% produces best distribution of flows between the normal and alternative routes

	Case 1 Normal		Case 4 Incident		Case 5 Incident		Case 6 Incident		Case 7 Incident	
	Exit 66	Exit 69	Exit 66	Exit 69	Exit 66	Exit 69	Exit 66	Exit 69	Exit 66	Exit 69
07:00-07:15	1,712	668	1,712	668	1,712	668	1,712	668	1,712	668
07:15-07:30	1,884	1012	1,884	1012	1,884	1012	1,884	1012	1,884	1012
07:30-07:45	2,120	872	2,120	872	2,120	872	2,120	872	2,120	872
07:45-08:00	1,984	904	1,984	904	1,984	904	1,984	904	1,984	904
08:00-08:15	2,056	840	2,056	840	2,056	840	2,056	840	2,056	840
)8:15-08:30	2,012	852	2,012	852	2,012	852	2,012	852	2,012	852
)8:30-08:45)8:45-09:00	2,064 1,920	716 816	1,508 1,208	1052 1248	1,304 1,124	1156 1240	1,120 880	1224 1200	576 400	1224 1272

without diversions).	does	e 3 (only s not pro	incid	ent sign much b	al timing penefits
rmal route (Exit 66)	com	pared to	Case	a 4 (incic	lent sign:
nlans with diversio	ne)	50.00 10	00.01	. (ioni oigin
pians with uiversio	113)				
Provide	Barrie		frank.	All subjects	Report Plant
scenano	Houte	(seconds per vehicle)	(kph)	of Stops (per vehicle)	per Vehicle (seconds)
Case 1					
(Normal Conditions-1405 cycle)	Ext 69	140	21	4	410
Case 2					
(Incident -0% Diversion-140s cycle)	EXE 60	159	44	0	451
Case 3					
(Incident -0% Olversion-100s cycle)	EAR 00	160	44	9	451
	Ext 69	157	21		410
(incident- 30% Diversion-160s cycle)	Exe 66	145	46	1	436
	Exit 69	292	30	9	656
Case 5					
(modelle avia nagradu-tona chos)	Ex8.00	140	-0		450
Case 6	a.a.t 09	*07			
CONTRACTOR AND	Ext 66	145	-46	7	435
(Incident- 50% Diversion-160s cycle)					
(Incident- 50% Diversion-160s cycle)	Ext 09	304	29	10	668
(Incident- 50% Diversion-160s cycle) Case 7 (Incident- 50% Diversion-160s cycle)	Ext 00	304	29	10	668

IM Strategies - Variable Speed Limit (VSL)

Preliminary investigation of VSL as a means to reduce incident impacts

- 8-km section of M1 was tested Some of the factors that affect performance of VSL include distances between signs, triggers for changing speed limits, speed limit increments, .
- levels of congestion etc Flow homogenisation (reduction in the variation of the speeds between vehicles, both within a lane and adjacent lanes) and reduction in decelerations at the back of queued vehicles were found

SIGN	1 50	N2 5	IGN3	540	N 4	510	NS	5407	4 6	SIGN	7 515	
			1	/	611			1	E-C	-		
Section ID Length (m) No. Lawes	2ec1 1015.8 4	542 8793 4	Sector 343.4 4	Sec3b (42.8 4	Secia 603 4	Dec-80 202.6 6	Sacta 398.7 _1	Secto S76.8 4	Secta 355.4 4	Secto ALLA	5ac7 987.0 4	Sect. 1008.8 4

- Preliminary Findings
 VSL has potential to provide safety and efficiency benefits by homogenising the flow in higher speed regimes
- The number of stops per vehicle on the motorway reduced by 64 percent following the speed limit reduction from 110 kph to 70 kph as a result of the incident
- VSL was found to provide an 11 percent improvement in delays upstream of the incident **AECOM** .

Summary

- Study demonstrated feasibility of using traffic simulation to evaluate the impacts of incidents and IM strategies
- Simulated incidents, based on characteristics of real-life incidents, were found to have substantial impacts on network performance, operating costs and . emissions

e.g. AM Peak incidents resulted in

- 2.2% increase in travel time
 5.7% increase in delays
 1.5% increase in CO emissions
 5.0% increase in operating costs

Selected IM strategies were explored

- Ramp metering VMS information, route diversions and dynamic signal timing plans - best results obtained when diversions were combined with incident signal timing plans
- Results are network-dependent; will vary across networks; and are a function of existing levels of congestion, availability of alternative routes and congestion on these route; driver route choice behaviour and compliance with traffic advise etc .

AECOM