Investigating Speed Patterns and Estimating Speed on Traffic-Calmed Streets

Basil Daniel, Alan Nicholson and Glen Koorey
University of Canterbury, Christchurch

Introduction

Safer Residential Streets
- Speeding on local streets is a major concern.
- Create safer streets to protect road users and improve community livability.
- Employ speed reduction techniques – traffic calming.

Traffic-calmed streets = Lower speeds?
- Previous research agree.
- Are lower speeds maintained throughout the entire length of a street?
- Are the speeds simply lower across and in proximity with a traffic calming device?

Research Objectives
- To determine the speed-reducing effect and the extent of influence zones of vertical and horizontal deflections.
- To examine the effect of traffic calming devices on speed variation.
- To develop methods for the prediction of speed on traffic-calmed streets.

Research Area
17 residential streets in Christchurch, calmed by speed humps, speed tables, angled slow points and mid-block narrowings.
Analysis of Speed Profiles

Speed profiles were plotted to compare speed-reducing effect and to determine influence zone of the different devices.

Testing for Variation In Speed

The F-test for equality of variances of speeds at the device and at distances from the device were conducted.

Speed Estimation Methods

- Speed-distance curves were produced to estimate speed at varying distances from the devices.
- Models for estimating speed midway between speed humps and speed tables were developed using linear regression.

General Speed Patterns

- Speed hump
- Speed table
- Angled slow point

Speed-Reducing Effect

Comparison of speeds on streets with isolated calming devices:
- Operating speed (km/h)
- Street speed (km/h)
- Speed difference (km/h)
Influence Zones Results

Influence zones (in metres) of isolated calming devices

Variation of Speed at Devices

Large deviations from the mean speed when traversing calming devices imply that there is significant behavioural differences among drivers.

Variances in speed were:
- **smaller** across the speed hump and the raised angled slow point than other sections on the respective streets.
- **larger** across the speed table than other sections of the street.
- **similar** throughout streets with the flush angled slow point and mid-block narrowings.

Speed Difference Curves Results

- Speed-distance relationships were approximately quadratic in form.
- Speed difference curves can be used to estimate speed at varying distances from the device if the design speed is known.

Speed-Spacing Models Results

For speed humps

- $V_{85} = 0.127S_h + 28.74$
 - $R^2 = 0.946$
- $V_{\text{mean}} = 0.125S_h + 22.99$
 - $R^2 = 0.944$

where V_{85} is the 85th percentile speed, V_{mean} is the mean speed, and S_h is the spacing of speed humps.
Results

Speed-Spacing Models

For speed tables

\[V_{85} = 0.068S_T + 40.0 \]

\[R^2 = 0.825 \]

\[V_{mean} = 0.082S_T + 31.33 \]

\[R^2 = 0.811 \]

Speed tables

- **85th Percentile Speed**
 - 35
 - 40
 - 45
 - 50
- **Mean Speed**
 - 35
 - 40
 - 45
 - 50

<table>
<thead>
<tr>
<th>Speed spacing (m)</th>
<th>Speed humps</th>
<th>Speed tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 50</td>
<td>≤ 85</td>
<td>≤ 125</td>
</tr>
<tr>
<td></td>
<td>≤ 165</td>
<td>≤ 165</td>
</tr>
<tr>
<td></td>
<td>≤ 175</td>
<td>≤ 215</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>≤ 70</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>≤ 145</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>≤ 45</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>≤ 105</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>≤ 165</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>≤ 225</td>
</tr>
</tbody>
</table>

* Desired maximum street speed not attainable

Conclusions

Are vertical deflections effective?

- The speed hump produced the lowest operating speed (21.9 km/h) and largest speed change (-21.1 km/h). Variation of speeds across the speed hump was lower compared to other sections on the street.

- The speed table does reduce speed (-11.1 km/h), but operating speed is 15 km/h above the target speed of 20 km/h.

Are horizontal deflections effective?

- Mid-block narrowings do not reduce speed significantly.

- Angled slow points have a greater speed-reducing effect than mid-block narrowings and the speed table, but street and operating speeds are high.

Appropriate spacing for desired speed

- 85th percentile speed exceeds 50 km/h if spacing of:
 - speed humps is > 170 m
 - speed tables is > 145 m

- The spacing of speed humps is recommended to be ≤ 85 m to achieve a desired maximum 85th percentile of 40 km/h.

- A desired maximum 85th percentile speed of 40 km/h may not be attainable with speed tables, but 45 km/h is possible if spacing of speed tables is ≤ 70 m.
Closing

Achieving Low Speed Environments

- For traffic calming measures to be effective,
 - select devices that produce optimal speed-reducing effect.
 - use multiple devices that are appropriately spaced.
- There is a better chance of achieving low speed environments if a 30 km/h or 40 km/h speed limits is imposed and supported by traffic calming measures.

Thank You.

Appendix

Speed Hump vs Speed Table

- Street speed - LOWER
- Operating speed - LOWER
- Speed difference - BIGGER

Angled Slow Points: Raised vs Flush

- Street speed - LOWER
- Operating speed - LOWER
- Speed difference - BIGGER
Mid-block narrowings: Raised vs Flush

- Street speed: LOWER
- Operating speed: LOWER
- Speed difference: SLIGHTLY BIGGER

Mid-block narrowings: One-Lane vs Two-Lane

- Slightly lower speeds