


Introduction and Context

- A study on delays for pedestrians at signalised crossings
- Focus on CBDs
- Focus on pedestrian peak times (12-2pm)
- LTNZ / NZTA funded
- ~2,400,000,000 crossings per year in NZ
- Everyone is a pedestrian at some point.

швеса

Research components

- Literature review
- 14 intersections surveyed traffic counts, traffic queues, SCATS info, pedestrian counts, pedestrian delays, O-D surveys
- 811 pedestrian interviews
- 1,465 wait time pedestrian observations
- Microsimulation modelling: aSIDRA, S-Paramics Aimsun

швеса

Findings – Literature Complexities of research Identifying pedestrian delay • Direct link between delay and fraustration Identifying 'average' walk speeds • Direct link between delay and ignoring signals Modelling pedestrian behaviour / model limitations • Therefore: direct link between delay and road safety швеса швеса Lake Road (North Shore City) Albert/Customs Street (Auckland) швеса швеса Manchester Street (Christchurch) Colombo/ Heresford (Christchurch)

швеса

швеса

Findings – Observations

- Recommended wait time: 25-30 seconds (literature)
- Average Delay Auckland 53 seconds
- Average Delay Wellington 45 seconds
- Average Delay Christchurch 25 seconds
- Combined Average 41 seconds (1,465 observations)

іп веса

Ped attitudes - percieved wait times

 75% of Auckland respondents felt more priority should be given to pedestrians.

City	Remorab+	Perceived	Urterance	Emerance %:
Austra.	,X;	73	.77	7,8%
Yvingen -	N/		>"	74
Christian runs n	4	X	6	25,
:1		:51	11	.74

іп веса

Findings – Per person optimisation

- Intersections optimised to include pedestrians as well as cars
- Significant improvement to pedestrian delay
- Optimisation also reduced car delay at some locations

DHy	azellan	Tebry reduction from optimization	Optimization (othermeasures
A Place No.	Liver Light Television	200	1.8
A destroy	Alterna Colombia (North	3.5	274
White Ch.	rysige salma for Commonweal Asset	41.5	
WHO SHIP	.980 kg / Commedition	.815	N4

швеса

Pedestrian priority

- Most pedestrian trips are short duration (less than 10 minutes)
- Each minute of delay can therefore add +10% time
- Therefore, very variable trip lengths
- Perhaps pedestrian priority more useful than pedestrian green waves?

швеса

Lessons learned

- Every intersection is different
- If creating a pedestian green-wave better to underestimate speed then overestimate
- Trade off of safety vs delay
- Increasing cycle times can sometimes decrease average delay for both cars and peds
- Decreasing phase times can reduce 'green wastage' and decrease delays

іп веса

Lessons learned

- Every intersection is different
- Regular optimisation of signals
- Optimisation to include pedestrians, particularly in high pedestrian density areas and times
- Consideration of separate SCATS phases during pedestrian peaks – e.g. 12-2pm

іл веса

