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ABSTRACT 
Beca has developed a number of Accident Prediction Models (APM) for accidents at signalised 
intersections.  This paper presents and discusses APMs that have been developed for signalised 
intersections in New Zealand.  Flow-only models are now available for reported motor-vehicle, and 
cyclist and pedestrian versus motor-vehicle accidents.  Research has now considered non-flow 
variables such as intersection geometry and signal phasing and has found that these can be 
important predictor variables.  The models show that for increasing flows the accident rate per 
vehicle generally decreases, except for rear end motor-vehicle accidents.  This effect is largest for 
accidents involving cyclists where there is a strong ‘safety in numbers’ effect.  Current research 
into APMs for signals with high approach speeds is also outlined. 
 
INTRODUCTION 
Being able to predict the number of accidents at an intersection is a useful tool for transportation 
professionals. Accident Prediction Models (APMs) enable engineers to evaluate the effect on safety 
of new intersections, changes in the type of control, impact of remedial measures (such as right turn 
bays), and the effect of traffic growth.  By quantifying these changes an economic evaluation can be 
prepared, and a safety (or efficiency) project prioritised. 
 
With increasing traffic volumes on our urban roads, particularly in the large cities, existing 
roundabouts and priority-controlled junctions are being replaced with traffic signals to address 
capacity, efficiency and safety issues or to provide better amenity for pedestrians and cyclists.  As 
the types and severity of accidents vary between the forms of control, APMs can be used to show 
the changes in accident costs. 
 
Like a number of other developed countries, APMs have been developed in New Zealand for traffic 
signals.  The majority of models developed internationally have been for accidents involving motor-
vehicles only, and for either the major accident types or total accidents.  This paper discusses 
models for traffic signals that have been developed in New Zealand since 1995, and includes the 
following accident categories: 
 

• Total reported accidents (involving a motor-vehicle); 
• Cyclist versus motor vehicle accidents;  
• Pedestrians versus motor vehicle accidents; and  
• Major accident types;  

 
This paper covers some of the improvements that have been made to the model forms. It concludes 
with a discussion on current work on developing APMs for high-speed traffic signals. 
 
SIGNALISED INTERSECTION APMS 
Turner (2000) developed a series of APMs for a variety of intersection types and different motor-
vehicle accident types.  Two main types of model were developed for signalised intersections.  One 



model type relates specific accident types to the turning movements of vehicles involved in such 
collisions.  The second model type relates total accidents at an intersection to the product of two-
way traffic volumes on the two intersecting roads.  It was this second type of model that was 
incorporated into Appendix 6 of the Project Evaluation Manual (Transfund, 1997). 
 
Building on previous research, Turner and Roozenburg (2004) added non-flow variables to the 
models of right-turn-against APMs at 4-arm traffic signals.  The objective of this research was to 
consider a number of non-flow variables, and determine whether these are also key predictors for 
accident occurrence.  The outcome was a more refined accident prediction model for this accident 
type.  Of particular interest was the impact of right-turn phasing on accident occurrence.  The key 
non-flow variables examined were: 
 

• Intersection geometry and layout (e.g. number of through lanes, right turn bay offset and 
intersection depth); 

• Right-turn signal phasing (e.g. filtered turns); and 
• Forward visibility to opposing traffic. 

 
A number of the variables included in the models were correlated and hence explain the same 
variability in the accident observations. 
 
Prior to 2004 no accident prediction models had been developed in New Zealand for the non-
motorised modes of travel (walking or cycling).  Internationally only a small number of studies 
have considered these ‘active modes’.  Turner et. al. (2005) developed models for pedestrian and 
cyclists accidents involving motor-vehicles at intersections and midblock.  These models 
investigated a small number of non-flow variables in addition to motor vehicle, pedestrian and cycle 
traffic volumes. 
 
MODEL FORM 
The models used in the above studies are called generalised linear models and typically have a 
negative binomial or Poisson error structure.  Generalised linear models were first introduced to 
road accident studies by Maycock and Hall (1984), and extensively developed in Hauer et al (1989).   
 
The aim of the modelling exercise is to develop relationships between the mean number of 
accidents (as the dependent variable), and predictor variables, such as traffic, cyclist or pedestrian 
flows and non-flow variables.  Typically the models have the following form:  
 
Equation 1  21

210
bb xxbA = , 

 
where A is the annual mean number of accidents, xn is the average daily flow of vehicles, 
pedestrians or cyclists or a continuous non-flow variable, and bn are the model coefficients.  
Additional flows or non-flow variables can be added to the model in a multiplicative form by 
adding various ib

ix  variables on to the end of the equation.  In the modelling process, a log-linear 
transformation is made (refer to Equation 2).  This is the reason the models are called linear models 
even though the final model form is multiplicative. 
 
Equation 2  22110210 logloglogloglog 21 xbxbbxxbA bb ++==  
 



Discrete variables, either ordinal or nominal can also be included in the models.  Where a variable 
has two possible values, the models are typically of the form: 
 
Equation 3  321

210
bbb exxbA ±=  

 
In this model form, the two values of e±b3 act as multipliers for the ‘flow-only’ model (Equation 1). 
In the modelling process, the log-linear transform is: 
 
Equation 4  322110210 logloglogloglog 321 bxbxbbexxbA bbb +++== ±  
 
Models have either a Poisson or Negative binomial error structure.  The ‘Poisson’ model was used 
where the variance in accident numbers is roughly equal to or less than the mean over the majority 
of the traffic flow range.  However, when the variability is generally higher than the mean the 
‘negative binomial’ model is used. The Negative binomial model is a mixture of the Poisson and 
gamma distributions.  The model is described using two parameters k and µ, where k along with the 
coefficients b0, b1, b2 must be estimated from the data using an iterative process.  A more detailed 
explanation of the models is given in Turner (1995) and Hauer et al (1989). 
 
MODEL INTERPRETATION 
There is often confusion regarding interpretation of the relationship between accidents and the 
variables.  This section explains these relationships. 
 
In APMs the parameter b0 acts as a constant multiplicative value. If the number of reported injury 
accidents is not dependent on the values of the two predictor variables (x1 and x2), then the model 
parameters b1 and b2 are zero.  In this situation the value of b0 is equal to the mean number of 
accidents.  The value of the parameters b1 and b2 indicate the relationship that a particular predictor 
variable has (over its flow range) with accident occurrence.  There are five types of relationship, as 
presented in Figure 1 and discussed in Table 1. 
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Figure 1: Relationship between accidents and predictor variable x for different values of model exponents (b1) 
 
Generally, accident prediction models have exponents between bi = 0 and bi = 1, with most flow 
variables having an exponent close to 0.5, i.e. the square root of flow.  However in some situations 
parameters have a value outside this range.  For example, rear-end motor vehicle accidents, where 



the values of bi are consistently above 1.0.  This is likely to be due to an increase in traffic densities 
at higher flows which leads to increased interaction between vehicles making rear-end accidents 
more likely. 
Table 1: Relationship between predictor variable and accident rate 

Value of Exponent Relationship with accident rate 
bi > 1 For increasing values of the variable, the number of accidents will increase, and at an 

increasing accident rate 
bi = 1 For increasing values of the variable, the number of accidents will increase at a constant 

(or linear) accident rate 
0 < bi  < 1 For increasing values of the variable, the number of accidents will increase at a 

decreasing accident rate 
bi = 0 There will be no change in the number of accidents with increases in the value of the 

variable 
bi < 0 For increasing values of the variable, the number of accidents will decrease 
 
In the case of two discrete variables where a feature is either present or not present, the resulting 
multipliers in the models are usually incorporated into the parameter b0 for ease of use.  In this case 
two b0 values are presented, for both with and without the feature. 
 
URBAN SIGNALS 
The most recent work in New Zealand on developing accident prediction models for all reported 
vehicle accidents at a wide variety of urban and rural intersection types was undertaken by Turner 
(2000).  This research included models for urban traffic signals.  Models for total accident and 
major accident types were developed for signalised urban T-Junctions and cross-roads. Sites were 
selected throughout New Zealand. Five years of accident data were extracted from the LTSA’s 
(now the Ministry of Transport’s) accident database for each site and classified by movement type. 
Manual turning traffic volumes were also collected, typically for a 2-hour duration in the morning 
and evening peaks and the inter-peak. 
 
The models used the annual average daily traffic from the mid-point of the five-year accident 
history.  This was estimated from observed counts by applying daily, weekly, seasonal and annual 
correction factors.  This was the case in studies that followed, including when using pedestrian and 
cyclist flow variables.  
 
Signalised Cross Roads 
The mean annual number of accidents at signalised cross-roads can be predicted by accident type 
and approach using the equations in Table 2 and the parameters in Table 3.  Figure 2 illustrates the 
different conflicting and approach flows at cross-roads.  The entering flow Qe is the sum of all 
flows entering the intersection from each approach. 
 
Table 2: Signalised cross-road accident prediction equations 
Accident Type Accident Codes Equation (accidents per approach) 
Crossing (No Turns) HA A = b0 × q2

b1 × q11
b2 

Right Turn Against LB A = b0 × q2
b1 × q7

b2  
Rear-end FA to FE A = b0 × Qe

b1 
Loss-of –control C & D A = b0 × Qe

b1  
Others  A = b0 × Qe

b1  
 



Table 3: Signalised cross-roads – prediction model parameters 
Accident Type b0 b1 b2 Error Structure 
Crossing (No Turns) 1.57×10-4 0.36 0.38 NB (K = 1.1)* 
Right Turn Against 9.57×10-5 0.49 0.42 NB (K = 1.9)* 
Rear-end 1.66×10-6 1.07 - NB (K = 1.7)* 
Loss-of –control 2.96×10-6 0.95 - NB (K = 0.8)* 
Others 1.26×10-3 0.46 - NB (K = 1.5)* 
*K is the Gamma shape parameter for the negative binomial (NB) distribution. 
 
Excluding the model for rear-end accidents, all other models in Table 3 have exponents for vehicle 
flows between zero and one.  This indicates that as traffic flows increase, the accident risk per 
vehicle decreases.  As the exponent for entering flow in the rear-end accident model is above one, 
this indicates increasing accident risk per vehicle for increasing vehicle flows.  This is an expected 
result for this accident type has been observed in an earlier study (Turner, 1995) and for other 
intersection types (Turner, 2000). 

 
Figure 2: Conflicting and approach flow types (Cross-roads) 

Signalised T-junctions  
The mean annual number of accidents at signalised T-junctions are predicted by accident type and 
approach using the equations in Table 4 and the parameters in Table 5.  Figure 3 illustrates the 
different conflicting and approach flows at T-junctions.  The entering flow Qe is the sum of all 
flows entering the intersection for each of the three approaches.   
 
Table 4: Signalised T-junction accident prediction equations 
Accident Type Accident Codes Equation (accidents per approach) 
Right Turn Against LB A = b0 × q5

b1 × q3
b2  

Rear-end FA to FD A = b0 × Qe
b1   

Crossing (Vehicle 
Turning) 

JA A = b0 × q5
b1 × q1

b2  

Loss-of –control C & D A = b0 × Qe
b1  

Others  A = b0 × Qe
b1   

 
Table 5: Signalised T-junction – prediction model parameters 
Accident Type b0 b1 b2 Error Structure 
Right Turn Against 1.08×10-1 -0.38 0.56 Poisson 
Rear-end 7.66×10-8 1.45 - NB (K = 0.5) 
Crossing (Vehicle 
Turning) 2.67×10-2 -0.30 0.49 NB (K = 1.2) 
Loss-of –control 1.91×10-3 0.17 - Poisson 
Others 1.69×10-2 0.15 - NB (K = 2.4) 



The negative exponents in the ‘right-turn-against’ and ‘crossing’ (JA) models indicate that 
intersections with higher flows have fewer accidents.  It is speculated that at high right turning 
flows the installation of right turn bays and exclusive right turn phases reduces accident occurrence.  
This is a matter considered in the latter study by Turner and Roozenburg (2004).  It is not obvious 
why the exponent is negative for the ‘crossing’ (JA) model.  However, it may be due to the 
relatively small number of accidents (12) and intersections (30).  Further research is required to 
confirm this result. 

 
Figure 3: Conflicting and approach flow types (T-junction) 

 
Product of Links 
Following completion of the research report the ‘product-of-link’ models were further developed 
and incorporated into Transfund’s (now Land Transport NZ’s) Project Evaluation Manual.  These 
models enable the accident rate (accidents per year) at an intersection to be predicted using the link 
(two-way) flows on intersecting roads.  
 
The product of link cross-road model should not be used when the volumes of traffic on opposite 
arms of a four-arm intersection differ by more than 25% of the higher flow.  This occurs when the 
majority of traffic on a link turns left or right, so that the opposing intersection arm has low traffic 
volumes.  Where volumes on both opposing arms of a link are available then the two approach 
flows should be summed to calculate the link volume.  Likewise, the model for T-junctions should 
not be used when the volumes of traffic differ by more than 25% on each of the opposing arms of 
the main road. This occurs at intersections where the majority of traffic travels to or from one of the 
main road approaches to the stem of the T. 
 
The total reported annual number of injury accidents for each intersection types is determined using 
the following equations: 
 
Equation 5  AT = b0 × Qminor 

b1 × Qmajor b2 

 
Equation 6  AT = b0 × Qstem

b1 × Qmajor b2 
 
Where Qminor is the lowest of the two-way link volumes for cross-roads, and Qstem the stem flow for 
T-junctions. 
 
Table 6: ‘Product-of-link’ flow model parameters for signalised intersections 
Accident Type b0 b1 b2 Error Structure 
Signalised cross-road 3.69×10-3 0.14 0.46 NB (K = 4.8) 
Signalised T-junction 1.73×10-1 0.12 0.04 NB (K = 4.6) 
 



NON-FLOW VARIABLES 
Turner (2000) identified that the daily volume of right turning and through traffic are key predictor 
variables for accident occurrence in right-turn against accidents at 4-arm, two-way traffic signals.  
Turner and Roozenburg (2004) set out to consider a number of non-flow variables, and determine 
whether these are also key predictors for accident occurrence.  The outcome is a more refined 
accident prediction model for this accident type.  Of particular interest was the impact of right turn 
phasing on accident occurrence. 
 
The key non-flow variables examined were; right-turn signal phasing, visibility to opposing traffic, 
number of opposing lanes, right turn bay offset and intersection depth.  A number of the variables 
were correlated and hence explain the same variability in the accident data. 
 
To investigate which single variables should be added to the model we considered the change in the 
log-likelihood function for each model. Table 7, shows the log-likelihood for each model when the 
non-flow variable was added to the two flow variables.  The number of lanes of opposing through 
traffic maximises the log-likelihood function, which indicates that it is the best variable to add to 
the model.  Interestingly visibility to opposing through traffic does not feature as an important 
predictor variable. 
Table 7: Log-likelihood and BIC comparison 
Model Log-likelihood BIC 
Conflicting flow only model (flow-only model) -384.75 1.732 
Visibility to opposing traffic -384.58 1.744 
Right turn visibility below standard -383.61 1.740 
Number of lanes of opposing through traffic -378.87 1.719 
Right-turn signal phasing  -384.63 1.744 
Opposing right turning flow -383.86 1.741 
Intersection depth -383.84 1.741 
 
Using the Bayesian Information Criterion (BIC) we can compare the model that includes the 
number of lanes with the flow only model.  This BIC statistic indicates that the new model, which 
includes the number of opposing lanes, is a better model than that the flow only model.  We 
considered whether any of the other predictor variables should be added to the new three variable 
model but the BIC statistic does not indicate that this would produce a better model.  The analysis 
indicates that the preferred model form for right-turn against accidents is: 
 
Equation 6  AT = b0i × q2 

0.44 × q7 0.39 
 
where: 
b01 = 1.05×10-4  for an approach with a single opposing through lane 
b02 = 2.06×10-4  for an approach with multiple opposing lanes 
 
Two factors that did not improve the flow only model were signal phasing and visibility.  In the 
case of the model for signal phasing, sites were classed as either having fully filtered right turn 
phases or partially and fully protected right turn phases.  The partially and fully protected signals 
phasing sites, had to be grouped together because only a few sites in the dataset had fully protected 
right turn phases.  This may be the reason why the log-likelihood did not decrease significantly, as 
these two site types may have different effects, and this may be hidden when they are combined.  It 
is less clear as to why visibility did not feature in the modelling.  One hypothesis is that where 
visibility is limited drivers may be more cautious. 
 



A possible extension of this research would be to sample more intersections with fully controlled 
right turn phases.  This would enable a more thorough investigation of the effect of right-turn signal 
phasing. 
 
Further investigation is also required to establish what driver behaviours are influencing right turn 
against accidents.  Issues that need to be examined;  
 

1) Are drivers more cautious when visibility to through vehicles is restricted, due to right turn 
bay offset and short intersection depth; and  

2) Are drivers more cautious when right turns are filtered, and are they less likely to run the 
red-light than when right turn phases are provided.   

 
Modeling of driver behaviour when turning right at traffic signals in a driver simulator, would be 
useful. 
 
PEDESTRIAN AND CYCLISTS VERSUS MOTOR VEHICLE MODELS 
Turner et. al. (2005) developed APMs for pedestrians and cyclists.  Prior to this research, APMs 
had been developed using only motor vehicle volumes.  Turner et. al (2005) used a generalised 
linear modelling technique to develop APMs for cyclists versus motor-vehicles at roundabouts, 
signalised cross-roads and midblock.  Pedestrian versus motor-vehicle APMs were developed for 
signalised cross-roads and midblock. 
 
Figure 4 compares the proportions of accidents involving pedestrians and cyclists over the New 
Zealand urban network. Accidents involving cyclists make up 7 % of all injury accidents at 
signalised cross-roads in urban areas.  Pedestrian accidents make up 18 %. 
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Figure 4: Proportion of injury accidents involving pedestrians and cyclists (2000-2004) 

Two model types were developed for cycle versus motor-vehicle accidents at signalised cross-
roads.  The first, a ‘same direction’ model predicts accidents on a single approach between cyclists 
either colliding with a stationary vehicle or moving motor-vehicle, travelling in the same direction.  
The second model is for right-turn-against accidents where a cyclist is travelling straight through 
the intersection and collides with a motor vehicle turning right.  Table 8 and Table 9 present these 



two models and the proportion of cycle accidents that they represent at signalised cross-roads.  
Cycle movements are coded in a similar manner to motor-vehicle movements (see Figure 2).  
Entering flows, for example Ce, are the sum of all cycle entering flows, for example c1 + c2 + c3.   
Figure 5 shows the movements graphically. 
 
Table 8: Signalised cross-road cycle accident prediction equations 
Accident Type Accident Codes Equation (accidents per approach) Proportion of 

Cycle Accidents 
Same Direction A, E, F, G 21 b

e
b
eo CQbA ××=  35% 

Right Turn Against – 
Motor vehicle turning 

LB 21
27
bb

o cqbA ××=  21% 

 
Table 9: Signalised cross-roads – cycle accident prediction model parameters 
Accident Type b0 b1 b2 Error Structure 
Same Direction 7.49×10-4 0.29 0.09 Poisson 
Right Turn Against – 
Motor vehicle turning 

4.41×10-4 0.34 0.20 NB, K=1.3 

*K is the Gamma shape parameter for the negative binomial distribution. 
 

 

 

Qe = q1 + q2 + q3 
Ce = c1 + c2 + c3 

  
Figure 5: Cycle model variables 

The small value of the exponent of cycle flows (b2) in Table 9 indicates a ‘safety in numbers’ effect 
where the accident rate per cyclist decreases substantially as the number of cyclists increases.  
Figure 6 illustrates this effect for ‘same direction’ cycle accidents.  This effect has also been 
identified in international studies (refer to Turner et.al, 2005). 
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Figure 6: Accident rate for ‘same direction’ cycle accidents 

Two models were developed for predicting pedestrian accidents at signalised cross-roads.  The 
majority of all accidents involving pedestrians, not just those at signalised cross-roads, occur where 



vehicles are travelling straight along the road and the pedestrian is crossing.  These accidents 
represent 50% of pedestrian accidents at signalised cross-roads.  The second major type of 
pedestrian accidents at signalised cross-roads is where right turning vehicles collide with 
pedestrians crossing the side road. Table 10 and Table 11 present these two models.  Pedestrian 
movements differ from motor-vehicle and cycle movements.  For cross-roads, four movements are 
used, one for pedestrians crossing each approach.  One model presented here also uses a different 
motor vehicle movement, Q, which is the two-way vehicle flow on one road.  Figure 7 shows the 
movements used graphically. 
 
Table 10: Signalised cross-road pedestrian accident prediction equations 
Accident Type Accident Codes Equation (accidents per approach) Proportion of Ped. 

Accidents 
Crossing – vehicle 
intersecting 

NA, NB 21 bb
o PQbA ××=  50% 

Crossing – vehicle 
turning right 

ND, NF 21
14
bb

o pqbA ××=  36% 

 
Table 11: Signalised cross-roads – pedestrian accident prediction model parameters 
Accident Type b0 b1 b2 Error Structure 
Crossing – vehicle 
intersecting 

7.28×10-6 0.63 0.40 NB, K=3.7* 

Crossing – vehicle 
turning right 

5.43×10-5 0.43 0.51 NB, K=0.7* 

*K is the Gamma shape parameter for the negative binomial (NB) distribution. 
 

  
Figure 7: Pedestrian model variables 

Unlike cycle APMs, the ‘safety in numbers effect’ is not as pronounced with exponents of flow 
being similar to those observed for motor vehicle flows. 
 
Using the models below, it is possible to predict the total number of pedestrian and cycle accidents 
at signalised cross-roads.  This is done by calculating the number of accidents on each approach 
using the models and then multiplying the result by factors to take into account ‘other’ types of 
accidents.  The models generally have the form: 
 
Equation 7  AT(cycle) = factor × (ACycle Type 1 + ACycle Type 2); and 
 
Equation 8  AT (pedestrian) = factor × (APedestrian Type 1 + APedestrian Type 2) 
 
HIGH SPEED INTERSECTION MODELS 
Beca are currently developing accident prediction models for rural intersections (or intersections 
with speed limits above 80 km/h).  Rural intersections are particularly hazardous where there are 
high operating speeds on one or more approaches.  The first stage of this project, developing 



accident prediction models for rural priority junctions (cross-roads and T-junctions) is now 
complete.  The second stage of this project involves developing accident prediction models for rural 
traffic signals and roundabouts. 
 
Experience suggests that traffic signals in high-speed areas have high accident rates and more 
severe accidents than those in lower speed areas.  However, this has not yet been quantified.  This 
study is required to evaluate the relative accident rates and costs of traffic signals in rural or high-
speed areas compared with lower speed areas.  The models can also be used to compare alternative 
options, such as roundabouts, over-bridges (in which access is severed) and grade separated 
interchanges in high-speed areas. 
 
The number of high speed and rural traffic signal sites (where at least two legs of the intersection 
are 80km/h or higher) in New Zealand is relatively low (approximately 20 sites).  To develop good 
fitting models it is desirable to have large sample sets (50 plus intersections).  Given such a sample 
size was not available in New Zealand, two alternatives were investigated: 
 
1. To combine both urban and rural traffic signals datasets and develop covariate models based 

on speed limit for each accident type and for total accidents.  In this technique the full dataset 
is used to develop the ‘exponents’ for the model (b1 and b2) and the dataset for each speed limit 
would be used to calculate the multiplicative parameter (b0). 

2. To include traffic signal data from Melbourne in Australia and produce models based on 31 
sites in Melbourne and around 20 sites in New Zealand.  A covariate analysis could again be 
used to assess the differences in accident occurrence in the two countries. 

 
The second option was selected, due to availability of data in Melbourne.  It is also a good 
opportunity to compare the accident rates at intersections in both countries at the site-level, rather 
than by state, as is normally the case.  Traffic count data was collected in both New Zealand and 
Melbourne from SCATS controllers and in the case of shared lanes, from manual counts. 
 
CONCLUSIONS 
This paper has presented and discussed accident prediction models that have been developed for 
signalised intersections in New Zealand.  Flow-only models are now available for: 
 

• Total reported accidents (involving a motor-vehicle); 
• Cyclist versus motor vehicle accidents;  
• Pedestrians versus motor vehicle accidents; and  
• Major accident types;  

 
How to interpret the model forms has been presented along with the basic model structures, both in 
the multiplicative and linear forms.  The model relationships developed provide us with knowledge 
of the accident causing mechanisms in accidents at traffic signals.  It has been shown that the key 
variables at traffic signals are motor-vehicle, cyclist and pedestrian flows and that there is generally 
a decrease in the accident rate per vehicle, pedestrian and cyclist with increasing flows.  This is the 
‘safety in numbers effect’.  The biggest effect is for cyclists. 
 
The effect of non-flow variables on right-turn-against accidents at traffic signals have also been 
discussed.  The most important non-flow predictor variable is the number of opposing lanes.  The 
addition of visibility and right-turn signal phasing predictor variables were shown not to improve 
the flow only model, however, further research is required to confirm this. 
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