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Abstract 
 
Nearly all of New Zealand’s strategic routes have been built as two-lane highways, 
often through mountainous and rolling country. Increasing traffic flows have 
increased the demand for passing lanes to increase passing opportunities for users. 
 
Currently in New Zealand, passing lane benefits are assessed using two methods. For 
complex or expensive projects, computer micro-simulation of passing lane options is 
used. For projects with a lower capital cost or preliminary assessments of major 
projects, a simplified procedure is used. This research involved evaluating the 
simplified procedure for estimating passing demand. 
 
It was found that the equations in the simplified procedure for estimating passing 
demand between two streams has a critical flaw that occurs when the standard 
deviation of the speeds of the faster stream is low, causing the equations to estimate 
near zero passing demand when some demand would in fact exist. 
 
Additionally, probability distributions were fitted to actual speed data, and these 
distributions were used in a simple simulation model, to represent the speeds of 
vehicles in the two traffic streams. It was found that the logistic (not the Normal) 
distribution produced the best fit to the speed data. It was found that using these 
speed distributions in the simple simulation model, it is unnecessary to consider two 
separate traffic streams (e.g. cars and trucks) as required in the simplified procedure. 
 
1. Introduction 
 
The Project Evaluation Manual (Transfund, 1999) describes two procedures for 
evaluating passing lanes; the TRARR computer simulation software developed by the 
Australian Road Research Board (ARRB) and a simplified procedure. 
 
The simplified Project Evaluation Manual (PEM) procedure can be used to assess the 
benefits of passing lanes projects not involving realignments, not involving multiple 
passing lanes, and with a capital cost less than $400 000. It can also be used as a tool 
for identifying potentially worthwhile passing lane projects, before a more detailed 
and therefore more costly TRARR simulation analysis is carried out. There is also a 
revised simplified procedure under trial by Transfund, that simplifies the analysis 
further and enables analysis of passing lane strategies. 
 
This paper investigates one aspect of the simplified method (the estimation of passing 
demand), based on a method proposed by Troutbeck (1982). Troutbeck’s method was 
also used in developing the revised simplified method currently under trial. A detailed 
description of the research reported here is given in Roozenburg (2004).  
 



2. Simplified Procedure for Assessment of Passing Lanes 
 
The PEM’s simplified procedure is for use in a limited set of circumstances. It is 
important to have a good understanding of the procedure, in order to identify when it 
is appropriate to use it, and this section discusses the simplified procedure. 
     
In the assesment of the benefits of passing lanes, the travel time “lost” when 
following (because passing is not appropriate) is of critical importance in the 
evaluation of passing lane benefits. In the simplified procedure the Percentage of 
Time Spent Following (PTSF), that is, the amount of time spent waiting to pass is 
assessed through the Accrued Passing Demand (APD). The APD is summed over the 
analysis length to produce an Overall Passing Demand (OPD), which is then 
converted to the average time lost for all vehicles travelling at less than their desired 
speed to determine travel costs. The simplified procedure assumes that the APD 
(overtakings/h) is generally proportional to the level of bunching (or platooning) of 
the traffic flow, as follows (Koorey and Gu, 2001): 
 
 APD = {%Bunching} × {One-Way-Volume} (1) 
 
The APD can then be used to find the Average Distance Spent Following (ADSF), 
which is the area under a plot of the APD divided by the traffic volume (i.e. the 
percent following), as follows: 
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The PTSF is found graphically, by dividing the ADSF by the distance along the 
analysis length. It has been found however that the level of bunching approximates 
PTSF fairly well, with Harwood et al. (1999) finding that using a 3 second headway 
when measuring bunching in the field produces the best estimate of PTSF.  
 
Unfortunately bunching data is not always readily available or economic to collect, 
therefore the simplified procedure provides for an alternative method for determining 
APD and subsequently PTSF. This involves preferably having a starting point for the 
survey where bunching data is available and then estimating the initial APD, using 
speed data.  
 
The level of APD throughout the survey length is found by first dividing the survey 
length into segments, each segment having much the same alignment characteristics 
throughout (to ensure a reasonably constant speed within each section). For each 
segment the mean and standard deviation of the free speed of all free-flowing vehicles 
for both streams (typically, car and truck streams) need to be obtained. The hourly 
traffic flow data then needs to be examined to determine the time periods to be 
considered, so that the average hourly one-way flows for cars and trucks can be 
determined. 
 
Using this information on the traffic characteristics, total passing demand can be 
determined. The PEM procedure for estimating the total passing demand involves 
summing the passing demand for cars passing cars, cars passing trucks and trucks 
passing trucks. This total passing demand forms the demand part of the demand-
supply relationship for passing opportunities, and is estimated as follows: 



 
 Dtotal = Dcar-car + Dcar-truck +Dtruck-truck (3) 
 
The supply part of the demand-supply relationship for passing opportunities is found 
by multiplying together the Proportion of Available Gaps (PAG) in the opposing 
traffic stream, the Proportion of Adequate Sight Distance (PASD) for passing for the 
section of road (determined from the road geometry), and the estimated maximum 
possible overtaking rate for a section of road with no oncoming traffic (108 
overtakings per kilometre per hour), as follows: 
 
 S = PAG × PASD × 108         (overtakings/km/h) (4) 
 
Using the calculated supply and demand of passing opportunities, the net amount of 
desired passing not achieved per hour per kilometre for each section can be estimated. 
This is known as the Unsatisfied Passing Demand (UPD) and is estimated as follows: 
 
 UPD = D - S                          (overtakings/km/h) (5) 
 
Where the UPD is negative, this indicates that previously built up passing demand is 
able to be dissipated. From the UPD for each option and each time period, the overall 
passing demand can be determined. Therefore the total number of impeded vehicles is 
expected to accrue (or dissipate) linearly along the road, giving an Accrued Passing 
Demand (APD), which is the same APD as would be found from a bunching survey. 
Where a new road segment occurs, the UPD per kilometre changes accordingly. 
Passing lane options can then be compared by looking at the changes in the Overall 
Passing Demand (OPD) between different options, where the OPD is the integral of 
APD over the running distance. 
 
In the simplified procedure, Unsatisfied Passing Demand (UPD) is currently 
estimated for each road segment. This is then added to the existing Accrued Passing 
Demand (APD). For a given road section, the UPD currently does not vary with 
respect to the prior passing demand, with the exception that the APD cannot fall 
below zero. When comparing passing lane options, this therefore generally leads to 
parallel changes in the APD following a passing lane, with the two options never 
meeting. This clearly would not be the case, as it is unlikely that the passing lane 
would still be having a significant effect on APD some distance downstream. 
 
Koorey and Gu (2001) proposed to solve this problem by pointing out that only lead-
vehicles or free vehicles will dictate vehicle interactions when vehicles are bunched. 
The vehicles already bunched are not adding additional passing demand in the sense 
of demand used here, where demand is the number of vehicles that they would pass if 
given the opportunity. Therefore, the queued vehicles could be ignored in a passing 
demand calculation, provided that we also ignore within-queue interactions. 
 
Koorey and Gu (2001) propose that the proportion of catch-ups should logically 
decrease as the proportion of bunched vehicles increases. Therefore, for a given 
percent following (f), there are {(1-f ) × Volume} vehicles free to interact. The 
calculated passing demand is hence {(1-f) × DA-B}, where DA-B is the passing demand 
for vehicles in stream A to pass vehicles in stream B. If we assume (as the simplified 



procedure does) that the APD is proportional to bunching and volume, then the true 
passing demand can be estimated as follows: 
 
 {True Demand}A-B = (1-APD/{One-Way-Volume})×DA-B (6) 
The result of this approach is that at relatively high levels of APD, the additional 
demand generated by a lack of passing opportunities is much lower than the 
additional demand generated at much lower levels of APD, where bunching is 
minimal over the same road segment. This results in a road segment, with a passing 
lane which will substantially lower the APD, having a quicker return to a higher APD 
downstream than the same road segment without the passing lane. This leads to the 
APD plots converging at some point downstream for the passing lane options, rather 
than APD plots continuing on parallel to each other (as in the current demand 
formulation). This convergence is illustrated in Figure 1. 
 

 
Figure1: Schematic diagram of APD adjusted for initial APD 

(from Koorey and Gu, 2001) 
 
Let us now consider how “passing demand” is estimated. The generalised passing 
demand, DA-B, (i.e. the frequency with which vehicles in stream A catch up to vehicles 
in stream B, or catch-ups/km/h) is estimated as follows: 
 
 DA-B = γ × KA × KB × sA (7) 
where: 
γ  = a parameter, based on the difference in the mean speeds of the two streams, A and B, 

and the ratio of the standard deviations of the streams (from PEM Table 10.1); 
K   = traffic density (veh/km) = {Hourly Flow}  / {Mean Speed}; 
sA   = standard deviation of speed for stream A (km/h). 
 
In the above equation γ is found from tables using the two following equations 
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where Av  and Bv  are the mean speeds for stream A and B respectively, and sB is the 
standard deviation of speed for stream B. 



In the simplified procedures, the two streams are generally “cars” and “trucks”, but 
equation 7 can be simplified to estimate catch-ups within streams (e.g. faster cars 
catching up with slower ones). When a vehicle catches up to a slower one, it is 
assumed that the driver of the former will wish to pass, because of a higher desired 
speed. This represents the within-stream passing demand (overtakings/km/h) and can 
be estimated using the following equation (Wardrop 1952): 
 
 AAAA sKD 2564.0=−                               (10) 
 
3. Passing Demand Model in Excel 
 
It is interesting that equation 7 does not include the standard deviation of stream B 
speeds (sB). Although sB is a factor in determining γ and hence is taken into account 
when determining passing demand, equation 7 shows the passing demand would 
approach zero as sA approaches zero. This apparent illogicality was the initial reason 
for the investigation of the validity of the equations for estimating passing demand. 
 
To enable an investigation into the validity of the PEM passing demand equations, a 
simple Excel-based simulation model, to analyses the ordering of vehicles entering 
and leaving a section of road, was developed. This model produces probability 
distributions for passing demand. 
 
This model was based on assumptions similar to those underlying the PEM equations 
(e.g. vehicles having constant speeds within sections and vehicle passing slower 
vehicles they catch up with if the conditions allow. The model also assumed that if 
there was a section of road and vehicles could be uniquely identified entering and 
leaving the section over a set period of time, then it could be determined whether a 
vehicle has passed another vehicle (as shown in Figure 2). 
 

 
 

Figure 2: Space-Time Plot Showing Initial and Final Order of Vehicles. 
 
In this model each vehicle stream was given different speed characteristics, with the 
probability distributions for speed being able to be varied via changes to the 
distribution parameters (e.g. the mean and standard deviation). The initial headway 



distribution of vehicles entering the section could also be varied, but in keeping with 
the assumption of unimpeded flow, the headway distribution used was the uniform 
distribution, where headways were between zero and two times the mean headway. 
 
Speeds were then allocated to each vehicle using the simulations software @RISK, 
the passing demand was calculated then speeds and headways reallocated. This 
process was then repeated hundreds of times until a probability distribution of 
headways were produced. 
 
4. Comparison between Calculated Passing Demands 
 
The differences between the results from using the equations in the PEM for 
determining passing demand and that predicted using the model developed in Excel 
were investigated. For this analysis two streams (cars and trucks) were considered, 
with each stream having a Normal distribution of speeds, and varying standard 
deviation and differences between the mean speeds of the two streams. These were to 
analyse over all ranges of γ used in the table presented in the PEM. 
 
The discrepancy between the two models also appeared to be smallest when Y is equal 
to 1 (i.e. when the standard deviations of stream speeds are the same). The simple 
Excel-based model estimates much greater passing demand when the standard 
deviation of the truck stream is larger than the standard deviation of the car stream, 
while Troutbeck’s equations give a far lower passing demand in comparison. When 
the standard deviation of the car stream is larger than the standard deviation of the 
truck stream, the vehicle-order model gives a lower passing demand, but not to the 
same extent as the differences that occur with smaller values of Y. 
 
Within stream passing demand was also investigated by back-calculating the 
coefficient in the equation of Wardrop (1952) for car passing car rates: 
 
 AAAA sKD 2564.0=−   (overtakings/km/h) (11) 
 
If there is agreement between the passing demand obtained from equation 11 and the 
passing demand generated by the Excel-based model, then the coefficient calculated 
from dividing the passing demand (from the vehicle order model) by the 
concentration squared and the standard deviation of the speed, should be comparable 
to the theoretical value of 0.564. 
 
Figure 3 shows the back-calculated values of γ from the mean passing rates for cars 
passing cars. These should equal 0.564 throughout the range of car speed standard 
deviations for complete agreement between the vehicle order model and Wardrop’s 
model. It can be seen that the estimate of the coefficient is distinctly less than 0.564 
for low standard deviations in speeds, but approaches 0.564 as the standard deviation 
increases. This comparative underestimation of the passing demand using the Excel-
based model is likely to be a function of the headway distribution chosen for the 
model not allowing for enough vehicle interaction. 
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Figure 3: Back-calculated coefficient for car-car passing from model in Excel 

 
Given the large differences in the estimates of passing demand from the Excel model 
and the PEM equations, it was decided to investigate further the situation where the 
standard deviation of the stream speed approaches zero. 
 
Three scenarios were investigated using the Excel model, and the resulting passing 
demands were compared with the estimates obtained from the PEM equations. In 
these scenarios, the standard deviation of car speeds (Scenario 1), truck speeds 
(Scenario 2), and both car and truck speeds (Scenario 3) were varied, with all other 
input parameters remaining constant. The values and distributions used in this 
analysis are in the following table. For the scenarios with a constant standard 
deviation of speed, this value was set to 10 km/hr. 
 

Parameter Value 
Car Stream Flow Rate, Qcar 100 veh/h 
Truck Stream Flow Rate, Qtruck 20 veh/h 
Car Stream Mean Space Speed, carv  100 km/h 
Truck Stream Mean Space Speed, truckv  90 km/h 
Levels of Standard Deviation of Speeds 0, 2.5, 5, 7.5, 10, 12.5 km/h 
Speed Distribution Types Normal 
Initial Headway Distribution Type Uniform (i.e. random headways) 

 
Table 1: Parameters Values for Analysis with Zero Variance in Speed 

 
The results of only the Scenario 1, in which the standard deviation of car speeds was 
varied, are presented here (Figure 4). 
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Figure 4: Passing Demand Comparison (0 km/h≤ scar ≤12.5 km/h) 

 
While the car-truck passing demand (Dcar-truck) would not be expected to reduce much 
as the standard deviation in car speeds was reduced, due to the 10 km difference in 
mean speeds, Figure 4 shows the passing demand reducing to zero as the standard 
deviation of car speeds reduced to zero. Having no demand for cars passing trucks 
when the mean speeds differ by 10 km/hr indicates that the PEM equations for cars 
passing trucks does not work well when the standard deviation in car speeds is small. 
 
The key to this problem is the form of the equation for estimating the demand for cars 
passing trucks: 
 
 DA-B = γ × KA × KB × sA      (catch-ups/km/h) (12) 
 
Obviously, as the passing demand must tend to zero as the standard deviation of the 
stream A speeds approaches zero, unless γab has a corresponding multiplicative 
increase, which it does not and cannot have when sA is zero. Therefore it can be 
concluded that PEM equation for passing demand is incorrect when dealing with a 
low variance in speeds within the streams. 
 
The effect of this is that where a low standard deviation of speed is used in the 
analysis of passing lane benefits, the current procedure will underestimate passing 
demand and thus underestimate the benefits.  To examine this further, speed data 
(with low variance) obtained from a vehicle classifier and a proposed passing lane 
project were used for a comparison of benefit/cost ratios. An analysis using the 
existing procedure for determining passing demand and the model developed in Excel 
was then performed.  For this particular example, the benefit cost ratio increased by 
12 % when using the model developed in Excel in place of the existing procedure. 
 



5. Speed Distributions 
 
Given the above results, it is sensible to ask what standard deviation would we expect 
in practice, and would it be small enough to give substantial under-estimation of the 
passing demand when using the PEM simplified procedure? To answer this question 
traffic counts were analysed from an existing data set obtained by Koorey and Gu 
(2001). For this analysis, counts at one location along each of three routes were used. 
These surveys were carried out using automated Metrocount classifiers that collected 
vehicle speeds, classifications and volumes. Each of the three routes had different 
terrain and traffic characteristics; the first was a high-volume section of State 
Highway 1 south of Christchurch on flat terrain, the second was a lower volume 
section of State Highway 1 in rolling terrain in North Canterbury, and the third was a 
section of road in very hilly terrain on State Highway 75 between Christchurch and 
Akaroa. 
 
For each site the speed data were imported into an Excel spreadsheet, vehicles were 
then classified as either cars or trucks, and then free-flow speeds were used to 
estimate the passing demand (as required in the PEM). If a vehicle headway was less 
then 4.0 seconds then the vehicle was deemed to be following. 
 
The distribution-fitting software program BestFit was used to fit probability 
distributions to the data. BestFit has a range of statistical distributions that it can fit to 
data using various goodness-of-fit statistics. Distributions were fitted to the speed data 
for the car stream, the truck stream, and both streams combined. 
 
The results of this fitting of statistical distributions were interesting for two reasons. 
Firstly, the goodness-of-fit was better for the combined streams than for the individual 
streams. Secondly, the distribution that was continually fitted to data for both the 
combined and individual stream was not the Normal distribution but the logistic. 
 
It was surprising that the distributions fitted the combined stream speeds better than 
for the individual stream speeds, as one reason for having a separate distributions for 
each stream is that the combined distribution might be bi-modal and might thus not be 
well-described by a standard uni-modal distribution. Furthermore it was surprising 
that the fitted distributions were not heavily skewed, particularly for the distributions 
of speeds in mountainous terrain. The distribution and fit of a combined distribution 
for the very hilly site (in the uphill direction) is illustrated in Figure 5. 
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Figure 5: Histogram and Fitted Speed Distribution 

(combined free flowing stream in very hilly terrain in uphill direction) 
 
However it is hypothesised that for some sites and analysis periods, combining the 
streams may not be appropriate. Combining the streams may not be appropriate at 
sites where there are similar proportions of trucks and cars, with the means of the 
speed distributions being substantially different. It is unlikely though that this scenario 
would have a large effect on passing demand calculations for assessment of passing 
lanes though. This is because it is only likely to occur when total traffic volumes are 
low, such as late at night when heavy vehicles are still operating but there are very 
few passenger vehicles. Nevertheless, this issue merits further investigation. 
 
The other interesting aspect of these results was that the Normal distribution was not 
the best fitting distribution to the data. The best-fit distribution in most cases was the 
logistic distribution (a bell- shaped distribution, like the Normal distribution), with the 
log-logistic distribution being fitted in the few cases where the data was skewed. The 
main reason for the fitting of the logistic distribution is the kurtosis (or “peakiness”) 
of the speed data. The logistic distribution has a kurtosis of 4.2 compared with a 
kurtosis of 3.0 for the Normal distribution. The data in the samples generally had a 
kurtosis greater than 4.2 (i.e. closer to the value for the logistic distribution than the 
Normal distribution.  
 
This indicates that over recent years that the speed distribution of vehicles on the open 
road may have changed with a large proportion of vehicles now travelling at similar 
speeds.  If this is the case it may affect some of the assumptions made in, and 
therefore possibly the results of, a range of analyses where the variation in speeds is 
an important parameter. 
 
6. Passing Demand Using a Single Speed Distribution 
 
The fact that a distribution could be fitted to the combined data for the two streams 
indicated that there may be scope to simplify the PEM procedure by reducing the data 
requirements, by having to determine only the mean and standard deviation of the 

Speed (km/h) 



overall stream rather than for two separate streams. To assess the scope, the passing 
demand was estimated using the distributions for the combined and separate streams. 
 
The datasets for the three above-mentioned locations were used and distributions were 
fitted to the speed distributions for separate and combined streams. The passing 
demand was then estimated using the Excel passing demand model. For all three 
locations there seemed to be only a minimal difference between the total passing 
demands calculated using a single (combined) stream and using two separate streams 
(Figure 6). This is perhaps not surprising, given the good fit of the distributions. 
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Figure 6: Calculated Passing Demand for Flat Terrain Site 

 
This leads to the possibility of using a single equation, such as the Wardrop (1952) 
equation, for estimating passing demand from the characteristics of the total traffic 
stream. If further research confirms the appropriateness of the logistic distribution 
(rather than Normal distribution) for combined traffic streams, it would be appropriate 
to develop an equation for estimating passing demand for a single traffic stream with 
logistic-distributed speeds, equivalent to Wardrop’s equation for a single stream with 
Normal-distributed speeds. 
 
7. Conclusion 
 
It has been shown that in certain circumstances that the equations for determining 
passing demand used in the PEM underestimate passing demand compared with a 
computer model based on similar assumptions. This discrepancy is particularly 
evident when the standard deviation of the speed of the faster stream is small. 
 
This raises doubts about the accuracy and robustness of the equations used in 
estimating passing demand in the economic evaluation of passing lanes. However 
through investigation of the speed distributions at three locations in Canterbury and 
comparison of the total passing demand determined using these distributions, there is 
a possibility of simplifying the analysis while remedying this problem. This may be 
through the development of a single equation for determining passing demand using a 
single speed distribution for all traffic. This would also simplify data requirements, 
and should be investigated further. 
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