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Abstract

Traffic flow rate estimation is very important in the planning and design process for
all aspects of the road network.  Flow rates are most commonly estimated using a
‘stationary count’ that requires specialised equipment and is expensive to set up.  In
the 1950’s a method utilising a moving observer was suggested.  Basically, it involves
an observer in a moving vehicle counting the number of oncoming vehicles passed in
a specified length of road.  If the average speed of the moving vehicle, length of road
and trip time is known, then the flow rate can be calculated.  This study investigated
the feasibility and accuracy of using this method for rural roads in New Zealand,
many of which have low flow rates.  A risk analysis approach was used to simulate
moving observer surveys on roads with low flow rates. Results show that this method
does not give accurate flow estimates for roads with a balanced two-way flow rate
less than about 1000 veh/h, unless one undertakes an impracticably large number of
moving observer runs.
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1. Introduction

Traffic flow rate estimation is very important in the planning and design process for
all aspects of the road network.  However, since flow rates vary by day, week and
month, and flow rate estimation generally involves sampling in time, it is important to
take account of the consequent uncertainty when estimating the flow rate.

2. Risk Analysis

Practitioners are becoming increasingly aware of the need to estimate and take
account of the uncertainty (or risk) in a project evaluation.  Hence, there is an
increasing emphasis on using risk analysis techniques in the Project Evaluation
Manual (Transfund NZ, 1997).

One way of assessing the risk in a project is to model it using software such as
@RISK, which is an advanced computer modelling system used in conjunction with
Microsoft Excel or Lotus 1-2-3 to analyse any situation (from business to science to
engineering) that has an element of risk.  Traditionally, analyses combined single
point estimates of a model’s variables to predict a single result or outcome.  @RISK
allows the uncertainty in the estimates of those variables to be used to generate
information on the probability of all the possible outcomes.

The risk analysis process involves the following steps:
• A model is developed by defining a problem and its associated variables;
• The uncertainty in the variables is identified and a suitable probability distribution

assigned;
• The model is analysed by simulation to determine the range and probability of all

outcomes.

@RISK works in a spreadsheet that has been defined in Excel (or Lotus 1-2-3) with
some or all of the variables having special @RISK functions assigned to them.  Each
variable is described using its full range of possible values and a measure of the
likelihood of occurrence for each possible value.  @RISK has 32 built in probability
distributions (e.g. the Normal, Binomial and Poisson distributions), which allow
specification of nearly any type of uncertainty for the input variables.

Simulation involving a certain number of iterations is then carried out and results
generated for output cells in the spreadsheet.  @RISK executes simulations by
randomly sampling from the input probability distributions.  As the number of
iterations increases, the sampled values become distributed so that they approximate
the specified input probability distribution.  Finally, taking all the generated output
values and calculating statistics on how they are distributed, a distribution of
outcomes is created.
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3. Parameters Subject to Uncertainty

When discussing risk one usually thinks of a classic example such as the chance of a
bridge being carried away in a flood.  However, nearly all parameters used in a
project evaluation are in fact subject to some uncertainty, with some being more
uncertain than others (Travers Morgan, 1992).

The average annual daily traffic volume (AADT) is one of the most important
parameters in an economic evaluation of a roading project.  Therefore, reducing the
error in the estimation of the traffic volume is beneficial in reducing the uncertainty in
the overall analysis.

The AADT is usually estimated using short-term counts (e.g. weekly) and applying
adjustment factors to take into account seasonal variations.

Traffic flow rates can be measured in various ways, the most common being a
stationary count.  However, stationary counts have disadvantages, such as the
requirement for specialist equipment, which is expensive to install and operate, and
the limited coverage.  An alternative method is to use moving observers.

4. The Moving Observer Method

Although there are many variations to the moving observer method, it basically
involves the use of an observer (or observers) in a moving vehicle travelling along a
section of road.  The observer records the number of oncoming vehicles met, the
number of vehicles overtaken by the observer, and the number of times the observer is
overtaken by other vehicles.  If this and additional information, such as the average
speed of the vehicles, the observer speed and the length of the road section are known,
then the flow rate can be estimated.  In order to obtain a more accurate estimate of the
flow rate a number of trips down the same section of road is carried out.

The method is currently little (if at all) used in New Zealand for estimating flow rates.
However, another ‘moving observer’ method, frequently known as the ‘floating car’
method, is commonly used to obtain a speed-distance profile for a route.

The moving observer method was developed in the UK by the Road Research
Laboratory (Traffic and Safety Division) and was first described in a paper by
Wardrop and Charlesworth (1954). Their method involved a series of runs in a test
vehicle made travelling ‘with’ and ‘against’ a one-way traffic stream.  The observers
in the test vehicles record the following information for each run:
• The number of opposing vehicles met;
• The number of vehicles overtaking the test vehicle while it was travelling;
• The number of vehicles the test vehicle overtook;
• The average speed of the test vehicle and the distance of the run (or alternatively

the journey times of the observer, with and against the stream).
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These observations form the basis for the estimate of the traffic flow rate.  Equations
were derived enabling the traffic flow rate to be calculated from the collected
information.

Several advantages of using the moving observer method were recognised by
Wardrop and Charlesworth (1954).  These include the following:
• Information on flow and speed can be collected at the same time (this can be

particularly useful when studying the relationship between the two parameters).
• Travel time along a length of road can be measured as well as the flow rate and

average speed of vehicles.
• It is economical when the number of person-hours required to achieve a desired

level of accuracy is smaller for the moving observer method than for stationary
counts.

• Vehicles can be classified and flow rates found for the different classifications.
• Additional information (such as the locations and causes of delays) can be

recorded if required.

The disadvantages of the moving observer method as stated by O’Flaherty and
Simons (1970) are:
• The method is very sensitive to the amount of intersecting traffic from side streets

joining the flow on the main route.
• The accuracy of the method is very sensitive to fluctuations in the traffic stream.
• For low traffic flows a large number of test runs is required to achieve a given

degree of accuracy, and this may prove impractical.

Limited research has been carried out on the effectiveness of the moving observer
method for rural roads.

Previous research has focussed on comparing the moving observer method with
stationary counts, but stationary counts have their own errors.  This desktop study,
however, investigated the theoretical errors in estimating the flow rate using the
moving observer method.

5. Study Method

5.1 Research Undertaken

For this study, the moving observer method was simplified to better model a traffic
survey on a rural road.  Only the flow rate in the opposing direction to the moving
observer was taken into account, with the number of vehicles that overtake the
observer or are overtaken by the observer being ignored.

Wardrop and Charlesworth stated that trips would be taken in two vehicles travelling
in opposite directions on the same section of road at the same time (alternatively, one
vehicle travelling up and down a section of road so that it travels along the section in
both directions at approximately the same time would be used).  However, these
methods would not work in the New Zealand context, if the observer were collecting
the traffic flow data on a section of road while travelling to a job.  It is unlikely that
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the vehicle would make the same trip in the opposite direction immediately following
the first trip, or two vehicles would travel in opposing directions at the same time.
Therefore, trips are defined as one-way journeys, independent of other trips
undertaken on the same section of road.

5.2 Theory

The one-way flow rate of vehicles in the opposite direction to the observer, q1, can be
calculated using the following equation (refer to the Appendix for the derivation):
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where x = the number of oncoming vehicles met by the observer during the
observation time

l    =   the length of the surveyed section of road
v1  =   the speed of oncoming vehicles (km/h)
vo  =   the speed of the observer (km/h)

For a particular combination of flow rate, section length, oncoming vehicle speed and
observer speed, one can determine the expected number of oncoming vehicles met by
the observer as shown in the rearranged equation below.
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Given the randomness of traffic, one would expect some variation (about the expected
value) in the number of oncoming vehicles met.

The study involved controlling the three variables q1, l and vo, and allowing v1 and x
to vary according to specified probability distributions.  For a chosen combination of
the controlled variables (q1, l and vo) and a particular value of v1 (taken from a
probability distribution), the expected value of x was determined and a value of x was
generated (from a probability distribution with the appropriate expectation).  Using
the chosen values for l and vo, and the randomly generated values for v1 and x, a value
of q1 was then determined.  This was compared to the chosen value of q1, to identify
the error that may arise in the estimation of q1 when x and v1 vary randomly.

5.3 Variables

The values of the three controlled variables, namely the actual flow rate, the section
length and the observer speed, were varied as indicated in Table 1.  All combinations
of values were simulated giving a total of 36 (or 6x3x2) combinations or scenarios.
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Table 1: Values of Controlled Variables Used in Simulations

Oncoming flow rate, q1

(veh/h)
Section Length, l

(km)
Observer vehicle speed, vo

(km/h)

10 5 50
25 10 100
50 15
100
200
500

The flow rates were initially chosen to reflect rural roads with low flow rates.
However considering these are hourly one-way flow rates, these flows actually equate
to two-way AADTs of 200 – 10,000 veh/d, which are not really low flow rates in the
New Zealand context.

The three section lengths and two observer speeds were chosen to identify the effect
of variations in the section length and the observer speed on the precision of the
estimate of the flow rate.

In addition the speed of the oncoming vehicles was required.  The mean speed on an
open rural road in New Zealand based on speed surveys conducted by the LTSA is
102.4 km/h, with a standard deviation of 10.4 km/h (Phipps, 1999).  There was no
significant correlation between the mean speeds and the standard deviations of the
speeds.  Comparing the 85th percentile speeds with the mean speeds indicated that the
speeds are approximately Normally distributed.  Therefore a mean speed of 100 km/h
with a standard deviation of 10.4 km/h was utilised.

The number of vehicles that the moving observer meets in each trip was assumed to
be governed by a Poisson process.  In such a process, events occur at random and
independently, two events cannot occur simultaneously, the events occupy a
negligible amount of time, and they occur at a constant average rate per unit of time.

For each of the thirty-six scenarios 10,000 Monte Carlo simulations were performed.
The standard deviation of the calculated flow rate, q1, was examined for each of the
scenarios.  The standard error in the estimated flow rate (equal to the standard
deviation divided by the square root of the number of observations or trips), plus
upper and lower bounds, were then calculated.  It was assumed that a 5%
‘proportional error’ (i.e. the standard error being 5% of the flow rate) would be
acceptable. Assuming errors are Normally distributed, this means that there is only a
2.3% probability of the error being 10% (of the flow rate) or more. This is consistent
with the suggestion of Walker (1957) that a maximum acceptable error is 10%.

The number of trips required for the proportional error to be no more than 5% was
calculated for each scenario.  The number of trips was then multiplied by the time for
each observer trip (based on the speed and length of section) to obtain the total
observation time.  The total observation time is an indication of the resource cost of
estimating the traffic flow using the moving observer method (the lower the time and
therefore the resources required the better).  The results are shown in Table 2.
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6. Results

Table 2:  Summary of Scenario Results

Scenario
Flow

Rate, q1

(veh/h)

Observer
Speed, vo

(km/h)

Distance,
l (km)

Trip Time,
t (min)

Required
Number
of Trips

Total
Observation

Time, T
(hours)

1 50 6 165 16.5
2 100

5
3 245 12.25

3 50 12 82 16.4
4 100

10
6 123 12.3

5 50 18 55 16.5
6

10

100
15

9 83 12.45
7 50 6 84 8.4
8 100

5
3 127 6.35

9 50 12 43 8.6
10 100

10
6 64 6.4

11 50 18 29 8.7
12

25

100
15

9 43 6.45
13 50 6 47 4.7
14 100

5
3 70 3.5

15 50 12 24 4.8
16 100

10
6 35 3.5

17 50 18 16 4.8
18

50

100
15

9 24 3.6
19 50 6 25 2.5
20 100

5
3 37 1.85

21 50 12 13 2.6
22 100

10
6 19 1.9

23 50 18 9 2.7
24

100

100
15

9 13 1.95
25 50 6 13 1.3
26 100

5
3 19 0.95

27 50 12 7 1.4
28 100

10
6 10 1.0

29 50 18 5 1.5
30

200

100
15

9 7 1.05
31 50 6 6 0.6
32 100

5
3 8 0.4

33 50 12 3 0.6
34 100

10
6 4 0.4

35 50 18 2 0.6
36

500

100
15

9 3 0.45
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These results indicate that the degree of accuracy increases as the number of runs
increases, but the accuracy depends heavily on the flow rate.  In other words, the flow
rate has a strong and direct effect on the number of trips required to achieve a
specified degree of accuracy.

Figure 1 shows the effect the number of trips has on the proportional error in the
estimate of the flow rate.  The smaller the desired error in the flow rate, the more the
number of trips that need to be made. For example, if the actual flow rate for a 5 km
section of road is 500 veh/h and an observer is travelling at 100 km/h.  Then
approximately 8 trips are required to achieve a proportional error of 0.05 (or 5%). For
flow rates of 100 veh/h a very large number of runs are required to achieve the target.

Figure 1 shows clearly how the estimation error initially reduces quickly as the
number of trips increases from one, with the rate of error reduction becoming quite
small as the number of trips increases beyond the value corresponding to the ‘knee’ of
the curve.
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Figure 3:  Flow rate estimation error versus number of trips
(observer speed = 100 km/h, section length = 5 km)

A faster observer speed results in a larger error in the flow rate.  This arises because
the surveys with faster observer speeds have shorter trip times and therefore observe
for a shorter length of time.

The length of the surveyed section of road directly affects the number of trips required
but makes little difference to the total observation time.  For example, if six trips are
required to achieve a certain accuracy for a 5 km section then three trips will be
required for a section twice as long (i.e. 10 km). However, the trips on the 10 km
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section take twice as long so the total observation time between the two sections is
very similar. The results indicate that it is better to carry out more trips at a faster
observer speed than fewer trips at a slower speed.  This requires a smaller total
observation time and therefore fewer resources.

The most important observation, however, is that the method requires a very large
number of trips and therefore large total observation times for low flow rates.  It is
only at a flow rate of 500 veh/h on a long section of road (10-15 km) that the number
of trips becomes practical.  A flow rate of 500 veh/h equates to approximately 10,000
veh/day, and this is not a low flow rate in New Zealand.

7. Conclusion

The moving observer method might appear to be a sound method for estimating flow
rates, especially on low flow roads where the cost of laying down a tube count is too
expensive.  However, in order to achieve an acceptable level of accuracy for low flow
rural roads, the number of trips required will be too large to be practical.  The method
would better suit a high volume urban road, although if there are a large number of
side roads (causing the flow rate on the main road to change) there may well be
substantial inaccuracies in the estimates of the flow rate.
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Appendix

Consider a constant stream of vehicles travelling along a section of road in one
direction.  The stream can be regarded as the sum of several streams of vehicles
travelling at va, vb, etc. with flow rates of qa, qb, etc. and concentrations ka, kb, etc.
respectively.

The general traffic equation is:

kvq = (1)

where q is the flow rate (veh/h), k is the concentration (veh/km), and v is the space
mean speed (km/h).

Now:
q=qa+qb+… (2)

k=ka+kb+… (3)
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Rearranging eq. (1) gives:

v
q

k = (5)

The number of vehicles in a specified length of the road l is:

v
ql

kl = (6)

Chapman (1971) noted that the number of vehicles observed (x) equals the number of
vehicles already present in the section when the observer enters the test section (xa),
plus the number of vehicles that enter the section while the observer is within the
section (xb).  That is:

ba xxx += (7)

For a traffic stream with a flow rate q1, and an average speed of v1 then from eq. (6):

1

1

v
lq

xa = (8)

If the observer travels at a speed vo with a trip time of to then the number of vehicles
that enter the section while the observer is observing is the flow rate multiplied by the
time the observer is in the section.  That is:
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ob tqx 1= (9)

Wardrop and Charlesworth developed the following expression for the flow rate:
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In this equation, x is the number of vehicles met while travelling against the flow, y is
the number of vehicles that overtake or are overtaken while travelling with the flow,
and ta and tw are the observer trip times when travelling ‘against’ and ‘with’ the traffic
stream respectively.  Equation (9) is a special case of equation (10) when an observer
trip is only done one way (against the flow) so that y and tw are effectively zero, and ta

equals to .

Obviously:
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and substituting eq. (11) into eq.(9) gives:
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Finally, combining eqs. (7), (8) and (12) gives:
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Simplifying eq. (13) gives:
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Rearranging eq. (14) gives:
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Hence, by measuring v1, vo, x and l, one can estimate the actual flow rate of the
oncoming vehicles.


